Algebra Identities
- Sum of the first n integers \( 1+2+\cdots+n=\frac{n(n+1)}{2} \)
- Sum of squares 1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}
- Sum of cubes 1^3+2^3+\cdots+n^3=\left(\frac{n(n+1)}{2}\right)^2
- Finite geometric series 1+r+r^2+\cdots+r^n=\frac{r^{\,n+1}-1}{r-1}
|r|<1: Infinite geometric: 1+r+r^2+\cdots=\frac{1}{1-r} - Telescoping Series \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{n(n+1)} =\left(1-\frac{1}{2}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}
- Square of a sum (a+b)^2=a^2+2ab+b^2
- Square of a difference (a-b)^2=a^2-2ab+b^2
- Cube of a sum (a+b)^3=a^3+3a^2b+3ab^2+b^3
- Cube of a difference (a-b)^3=a^3-3a^2b+3ab^2-b^3
- Difference of squares a^2-b^2=(a-b)(a+b)
- Difference of cubes a^3-b^3=(a-b)(a^2+ab+b^2)
- Sum of cubes (factored) a^3+b^3=(a+b)(a^2-ab+b^2)
- General difference of powers a^n-b^n=(a-b)\left(a^{n-1}+a^{n-2}b+\cdots+b^{n-1}\right)
- Sum of odd power (n odd) n\ \text{odd}:\ a^n+b^n=(a+b)\left(a^{n-1}-a^{n-2}b+\cdots+b^{n-1}\right)
- Difference of even power (n even) n\ \text{even}:\ a^n-b^n=(a+b)\left(a^{n-1}-a^{n-2}b+\cdots-b^{n-1}\right)
- Hockey Stick Identity \binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}
- Vandermonde’s Identity \binom{m}{0}\binom{n}{k}+\binom{m}{1}\binom{n}{k-1}+\binom{m}{2}\binom{n}{k-2}+\cdots+\binom{m}{k}\binom{n}{0}=\binom{m+n}{k}
\binom{n}{0}^2+\binom{n}{1}^2+\binom{n}{2}^2+\cdots+\binom{n}{n}^2=\binom{2n}{n}
- Symmetric cubic sum a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)+3abc
- Factoring quadratic by grouping x^2+(a+b)x+ab=(x+a)(x+b)
- Binomial Theorem (a+b)^n=\binom{n}{0}a^n+\binom{n}{1}a^{n-1}b+\binom{n}{2}a^{n-2}b^2+\cdots+\binom{n}{n}b^n
- Quadratic Formula ax^2+bx+c=0\ \Rightarrow\ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
- Approaches to Similar Equations \text{Addition and Subtraction}
- SFFT (Simon’s Favorite Factoring Trick) xy + ax + by = c \Rightarrow (x + b)(y + a) = c + ab
BFFT (Bateni’s Favorite Factoring Trick 😊) axy + bx + cy = d
a^2xy + abx + acy = ad
(ax + c)(ay + b) = ad + bc - Square of a sum (n terms) (x_1 + x_2 + \cdots + x_n)^2 = x_1^2 + x_2^2 + \cdots + x_n^2 + 2x_1x_2 + 2x_1x_3 + \cdots + 2x_{n-1}x_n
- Arithmetic Sequence and Series a_n = a_1 + (n-1)d
S_n = a_1 + a_2 + \cdots + a_n = \frac{n}{2}(a_1 + a_n) - Expansion (or factorization) of three binomials abc-ab-ac-bc+a+b+c-1=(a-1)(b-1)(c-1)
- Expansion (or factorization) of two binomials a^2 + ab + ac + bc = (a + b)(a + c)
- Max–QM–AM–GM–HM–Min Inequality x_1,\ldots,x_n \in \mathbb{R}^+
\max\{x_i\} \;\ge\; \sqrt{\frac{x_1^2+x_2^2+\cdots+x_n^2}{n}} \;\ge\; \frac{x_1+x_2+\cdots+x_n}{n} \;\ge\; \sqrt[n]{x_1x_2\cdots x_n} \;\ge\; \frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\cdots+\frac{1}{x_n}} \;\ge\; \min\{x_i\}
Equality holds if and only if all x_i are equal. - Integer and Fractional Parts
\lfloor x \rfloor: Integer part \{x\}: Fractional partWe can write x as:
x = k + r,\qquad k \in \mathbb{Z},\ r \in \mathbb{R},\ 0 \le r < 1 - Vieta’s Formula For a quadratic:
ax^2+bx+c=0 (roots: r_1,r_2)
r_1+r_2=-\frac{b}{a}, \qquad r_1r_2=\frac{c}{a}For a cubic:
ax^3+bx^2+cx+d=0 (roots: r_1,r_2,r_3)
r_1+r_2+r_3=-\frac{b}{a}, \qquad r_1r_2+r_1r_3+r_2r_3=\frac{c}{a}, \qquad r_1r_2r_3=-\frac{d}{a}For a general polynomial:
a_nx^n+a_{n-1}x^{\,n-1}+a_{n-2}x^{\,n-2}+\cdots+a_1x+a_0=0 (roots: r_1,\ldots,r_n)
\begin{aligned} r_1+r_2+\cdots+r_n &= -\frac{a_{n-1}}{a_n},\\ \sum_{1\le i<j\le n} r_ir_j &= \frac{a_{n-2}}{a_n},\\ \sum_{1\le i<j<k\le n} r_ir_jr_k &= -\frac{a_{n-3}}{a_n},\\ &\ \vdots\\ r_1r_2\cdots r_{n-1} &= (-1)^{n-1}\frac{a_1}{a_n},\\ r_1r_2\cdots r_n &= (-1)^{n}\frac{a_0}{a_n} \end{aligned} - Signs and Roots of Quadratics
- Remainder of Polynomial Division \begin{aligned} A(x) \div B(x):\quad A(x) = B(x)Q(x) + R(x),\quad \deg(R(x)) < \deg(B(x)) \\ \Rightarrow\ \text{If } B(x) = 0,\ \text{ then } A(x) = R(x) \end{aligned}
- Number of Positive Divisors
If
n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},
then the number of positive divisors of n is
(\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_k + 1).
- Sum of Positive Divisors
If
n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},
then the sum of the positive divisors of n is
(1 + p_1 + p_1^2 + \cdots + p_1^{\alpha_1})(1 + p_2 + p_2^2 + \cdots + p_2^{\alpha_2}) \cdots (1 + p_k + p_k^2 + \cdots + p_k^{\alpha_k}).
which can also be written as
\frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \times \frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1} \times \cdots \times \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}.
- Product of Positive Divisors
If
n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},
let
t = (\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_k + 1).
Then the product of the positive divisors of n is
n^{t/2}.
- General Solutions of Trigonometric Equations
\sin \alpha = \sin \beta \Rightarrow \alpha = \beta + 360k,\ 180 - \beta + 360k,\ k \in \mathbb{Z}
\cos \alpha = \cos \beta \Rightarrow \alpha = \pm \beta + 360k,\ k \in \mathbb{Z}
\tan \alpha = \tan \beta \Rightarrow \alpha = \beta + 180k,\ k \in \mathbb{Z}
\cot \alpha = \cot \beta \Rightarrow \alpha = \beta + 180k,\ k \in \mathbb{Z}
- Trigonometric Transformations
\sin(90^\circ - \alpha) = \cos \alpha
\cos(90^\circ - \alpha) = \sin \alpha
\tan(90^\circ - \alpha) = \cot \alpha
\cot(90^\circ - \alpha) = \tan \alpha
\sin(180^\circ - \alpha) = \sin \alpha
\cos(180^\circ - \alpha) = -\cos \alpha
\tan(180^\circ - \alpha) = -\tan \alpha
\cot(180^\circ - \alpha) = -\cot \alpha
\sin(-\alpha) = -\sin \alpha
\cos(-\alpha) = \cos \alpha
\tan(-\alpha) = -\tan \alpha
\cot(-\alpha) = -\cot \alpha
\sin(90^\circ + \alpha) = \cos \alpha
\cos(90^\circ + \alpha) = -\sin \alpha
\tan(90^\circ + \alpha) = -\cot \alpha
\cot(90^\circ + \alpha) = -\tan \alpha
\sin(180^\circ + \alpha) = -\sin \alpha
\cos(180^\circ + \alpha) = -\cos \alpha
\tan(180^\circ + \alpha) = \tan \alpha
\cot(180^\circ + \alpha) = \cot \alpha
- Trigonometric Identities
\sin^2 \alpha + \cos^2 \alpha = 1
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\sin 2\alpha = 2 \sin \alpha \cos \alpha
\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha
\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}
\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}
\sin x + \cos x = \sqrt{2} \sin(x + 45^\circ)
\sin x - \cos x = \sqrt{2} \sin(x - 45^\circ)
- Trigonometric Sum-to-Product Identities
\sin \alpha + \sin \beta = 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right)
\sin \alpha - \sin \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right)
\cos \alpha + \cos \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right)
\cos \alpha - \cos \beta = -2 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\alpha - \beta}{2} \right)
- Trigonometric Product-to-Sum Identities
\sin p \cos q = \frac{1}{2} \left( \sin(p + q) + \sin(p - q) \right)
\cos p \cos q = \frac{1}{2} \left( \cos(p + q) + \cos(p - q) \right)
\sin p \sin q = \frac{1}{2} \left( \cos(p - q) - \cos(p + q) \right)
AMC 10A — Problems
AMC 10A 2024 ( Problem 11 )
How many ordered pairs of integers (m,n) satisfy \sqrt{n^2 - 49} = m ?
- 1
- 2
- 3
- 4
- infinitely many
Hints & Final Answer
Hint 1
Square both sides.
Hint 2
Rearrange and use Identity 10 (Difference of Squares).
Hint 3
n^2-m^2=(n-m)(n+m)=49
Hint 4
n-m and n+m are factors of 49.
Final Answer
(B) 2
AMC 10/12A 2022 ( Problem 16 )
The roots of the polynomial 10x^3 - 39x^2 + 29x - 6 are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
- \dfrac{24}{5}
- \dfrac{42}{5}
- \dfrac{81}{5}
- 30
- 48
Hints & Final Answer
Hint 1
Use 30. Vieta’s Formula.
Hint 2
\text{Volume} = (r_1 + 2)(r_2 + 2)(r_3 + 2)
Hint 3
By using 30. Vieta’s Formula:
\begin{aligned} r_1 + r_2 + r_3 &= \frac{39}{10}, \\ r_1r_2 + r_1r_3 + r_2r_3 &= \frac{29}{10}, \\ r_1r_2r_3 &= \frac{6}{10}. \end{aligned}
Hint 4
Expand:
(r_1 + 2)(r_2 + 2)(r_3 + 2) = r_1r_2r_3 + 2(r_1r_2 + r_2r_3 + r_3r_1) + 4(r_1 + r_2 + r_3) + 8. Substitute from Vieta’s results:
\frac{6}{10} + 2\left(\frac{29}{10}\right) + 4\left(\frac{39}{10}\right) + 8 = 30.
Final Answer
(D) 30
AMC 10/12 A Fall 2021 ( Problem 17 )
For how many ordered pairs \((b,c)\) of positive integers does neither \(x^2+bx+c=0\) nor \(x^2+cx+b=0\) have two distinct real solutions?
- 4
- 6
- 8
- 12
- 16
Hints & Final Answer
Hint 1
Use 31. Signs and Roots of Quadratics.
Hint 2
\[ \Delta \le 0 \Rightarrow b^2-4c \le 0 \Rightarrow b^2 \le 4c, \quad c^2-4b \le 0 \Rightarrow c^2 \le 4b. \]
Hint 3
From above, \[ b^2 \le 4c \text{ and } c^2 \le 4b \Rightarrow b^4 \le 16c^2 \le 64b \Rightarrow b^3 \le 64 \Rightarrow b \le 4. \] Similarly \(c \le 4\).
Hint 6
Case \(b=3\): \(9 \le 4c \Rightarrow c=3,\) and \(c^2 \le 12\) holds.
Hint 7
Case \(b=4\): \(16 \le 4c \Rightarrow c=4,\) and \(c^2 \le 16\) holds. Checking all valid \((b,c)\) up to 4 gives 6 pairs.
Final Answer: (B) 6
AMC 10/12A Spring 2021 ( Problem 10 )
Which of the following is equivalent to \[ (2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})(2^{64}+3^{64})\ ? \]
- \(3^{127}+2^{127}\)
- \(3^{127}+2^{127}+2\cdot3^{63}+3\cdot2^{63}\)
- \(3^{128}-2^{128}\)
- \(3^{128}+2^{128}\)
- \(5^{127}\)
Hints & Final Answer
Hint 1
Use 10. Difference of squares.
Hint 2
Multiply by \((3-2)\).
Hint 3
\[ (3-2)(2+3)(2^2+3^2)(2^4+3^4)\cdots(2^{64}+3^{64}) =(3^2-2^2)(2^2+3^2)(2^4+3^4)\cdots \] \[ =(3^4-2^4)(2^4+3^4)\cdots =(3^8-2^8)(2^8+3^8)\cdots \Rightarrow \cdots = 3^{128}-2^{128}. \] So the original product is \((3^{128}-2^{128})/(3-2)=3^{128}-2^{128}.\)
Final Answer
(C) \(3^{128}-2^{128}\)
AMC 10/12A Spring 2021 ( Problem 14 )
All the roots of the polynomial \(z^6-10z^5+Az^4+Bz^3+Cz^2+Dz+16\) are positive integers, possibly repeated. What is the value of \(B\)?
- \(-88\)
- \(-80\)
- \(-64\)
- \(-41\)
- \(-40\)
Hints & Final Answer
Hint 1
Use 30. Vieta’s Formula.
Hint 2
Sum of roots: \(r_1+\cdots+r_6=10.\) Product of roots: \(r_1r_2r_3r_4r_5r_6=16.\)
Hint 3
The only way with positive integers: roots \(2,2,2,2,1,1\).
Hint 4
By Vieta, the coefficient of \(z^3\) is \(-\!\sum r_ir_jr_k = -B\).
Hint 5
Count distinct triple products: \[ \binom{4}{3}(2\cdot2\cdot2) +\binom{4}{2}\binom{2}{1}(2\cdot2\cdot1) +\binom{4}{1}\binom{2}{2}(2\cdot1\cdot1) =32+48+8=88. \] So \(B=-88\).
Final Answer
(A) \(-88\)
AMC 10/12 A 2020 ( Problem 21 )
There exists a unique strictly increasing sequence of nonnegative integers \(a_1 < a_2 < \dots < a_k\) such that \[ \frac{2^{289} + 1}{2^{17} + 1} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_k}. \] What is \(k\)?
- 117
- 136
- 137
- 273
- 306
Hints & Final Answer
Hint 1
Use the identity for the sum of odd powers (when the exponent is odd): \[ u^{2n+1} + 1 = (u+1)\big(u^{2n} – u^{2n-1} + u^{2n-2} – \cdots – u + 1\big). \] Here \(u = 2^{17}\) and \(2n+1 = 17\cdot17 = 289\) is odd.
Hint 2
Factor the numerator: \[ 2^{289} + 1 = \big(2^{17}\big)^{17} + 1 = \big(2^{17} + 1\big) \Big( (2^{17})^{16} – (2^{17})^{15} + (2^{17})^{14} – \cdots + (2^{17})^{2} – (2^{17})^{1} + 1 \Big). \] Therefore, \[ \frac{2^{289}+1}{2^{17}+1} = (2^{17})^{16} – (2^{17})^{15} + (2^{17})^{14} – \cdots + (2^{17})^{2} – (2^{17})^{1} + 1. \] This is an alternating sum of 17 terms, starting with positive \((2^{17})^{16}\) and ending with \(+1\).
Hint 3
Key fact we’ll reuse: \[ 2^n + 2^n = 2^{n+1}. \] This lets us rewrite differences like \((2^{17})^m – (2^{17})^{m-1}\) as a sum of distinct powers of \(2\) with consecutive exponents.
Hint 4
Look at one “block”: \[ (2^{17})^{2} – (2^{17})^{1} = 2^{34} – 2^{17}. \] Now expand the difference of powers in base 2: \[ 2^{34} – 2^{17} = 2^{34} + 2^{33} – 2^{33} – 2^{17} = 2^{34} + 2^{33} + \cdots + 2^{18} + 2^{17} – 2^{17}. \] More cleanly (using geometric series structure): \[ 2^{34} – 2^{17} = 2^{17}\big(2^{17}-1\big) = 2^{33} + 2^{32} + 2^{31} + \cdots + 2^{18} + 2^{17} – 2^{17} = 2^{33} + 2^{32} + \cdots + 2^{18}. \] This is a sum of 16 consecutive powers: \(2^{18}, 2^{19}, \ldots, 2^{33}.\) Including also that final lone \(+2^{17}\) from elsewhere will give us 17 distinct powers in total for that pair. In words: each adjacent pair \((2^{17})^{m} – (2^{17})^{m-1}\) “unpacks” into 17 distinct powers of 2 with consecutive exponents.
Hint 5
Similarly, for higher exponents: \[ (2^{17})^{4} – (2^{17})^{3} = 2^{68} – 2^{51} = 2^{67} + 2^{66} + \cdots + 2^{52} + 2^{51}. \] Again we get 17 distinct consecutive powers of 2.
Hint 6
The whole expression \[ (2^{17})^{16} – (2^{17})^{15} + (2^{17})^{14} – \cdots + (2^{17})^{2} – (2^{17})^{1} + 1 \] can be grouped into 8 “difference blocks” of the form \((2^{17})^{m} – (2^{17})^{m-1}\), each block expanding into 17 distinct powers of \(2\) with unique exponents, plus the final \(+1 = 2^0\). Because the exponents in different blocks don’t overlap, the binary expansion of the entire sum is just a bunch of distinct powers of 2, no carries needed. So we get: – one term from the final \(+1\), – plus \(8\) blocks, – with \(17\) distinct powers of \(2\) contributed per block.
Hint 7
Therefore \[ k = 1 + 17 \times 8 = 1 + 136 = 137. \]
Final Answer
(C) 137
AMC 10A 2020 ( Problem 14 )
Real numbers x and y satisfy x + y = 4 and x \cdot y = -2. What is the value of x + \dfrac{x^3}{y^2} + \dfrac{y^3}{x^2} + y?
- 360
- 400
- 420
- 440
- 480
Hints & Final Answer
Hint 1
Calculate x^2 + y^2.
Hint 2
By using 6. Square of a Sum: x^2 + y^2 = (x + y)^2 - 2xy = 4^2 - 2(-2) = 20
Hint 3
Calculate x^3 + y^3.
Hint 4
By using 12. Sum of cubes: x^3 + y^3 = (x + y)(x^2 - xy + y^2) = 4(20 + 2) = 88
Hint 5
Calculate x^5 + y^5.
Hint 6
x^5 + y^5 = (x^2 + y^2)(x^3 + y^3) - (x^2y^3 + x^3y^2) But x^2y^3 + x^3y^2 = x^2y^2(x + y). Since xy = -2 \Rightarrow x^2y^2 = 4, and x + y = 4, we have x^2y^2(x + y) = 4 \cdot 4 = 16. x^5 + y^5 = (20)(88) - 16 = 1760 - 16 = 1744
Hint 7
We want x + \dfrac{x^3}{y^2} + \dfrac{y^3}{x^2} + y = x + y + \dfrac{x^5 + y^5}{x^2y^2} x + y = 4, x^5 + y^5 = 1744, x^2y^2 = 4. \dfrac{x^5 + y^5}{x^2y^2} = \dfrac{1744}{4} = 436 Therefore, x + \dfrac{x^3}{y^2} + \dfrac{y^3}{x^2} + y = 4 + 436 = 440
Final Answer
(D) 440
AMC 10A 2020 ( Problem 8 )
What is the value of 1 + 2 + 3 - 4 + 5 + 6 + 7 - 8 + \cdots + 197 + 198 + 199 - 200 ?
- 9,800
- 9,900
- 10,000
- 10,100
- 10,200
Hints & Final Answer
Hint 1
Use 1. Sum of the first n integers.
Hint 2
Let S = 1 + 2 + 3 - 4 + 5 + 6 + 7 - 8 + \cdots + 197 + 198 + 199 - 200 We can rewrite it as: S = (1 + 2 + 3 + \cdots + 200) - 2(4 + 8 + \cdots + 200)
Hint 3
The sum of the first 200 integers: 1 + 2 + \cdots + 200 = \dfrac{200 \times 201}{2} = 20100 The second term is an arithmetic series of 4’s multiples: 4 + 8 + \cdots + 200 = 4(1 + 2 + \cdots + 50) = 4 \left( \dfrac{50 \times 51}{2} \right) = 4(1275) = 5100 Therefore, S = 20100 - 2(5100) = 20100 - 10200 = 9900
Final Answer
(B) 9900
AMC 10A 2020 ( Problem 5 )
What is the sum of all real numbers x for which |x^2-12x+34|=2?
- 12
- 15
- 18
- 21
- 25
Hints & Final Answer
Hint 1
x^2-12x+34=\pm2
Hint 2
Case 1: x^2-12x+34=2\Rightarrow x^2-12x+32=0
By using 31. Signs and Roots of Quadratics:
\Delta=12^2-4(32)=144-128=16>0 → there are 2 different real roots r_1,r_2.
By using 30. Vieta’s Formula:
r_1+r_2=-\frac{-12}{1}=12
Hint 3
Case 2: x^2-12x+34=-2\Rightarrow x^2-12x+36=0
(x-6)^2=0 → one root x=6.
The total sum of all real solutions is 12+6=18.
Final Answer
(C) 18
AMC 10A 2012 ( Problem 22 )
The sum of the first m positive odd integers is 212 more than the sum of the first n positive even integers. What is the sum of all possible values of n?
- 255
- 256
- 257
- 258
- 259
Hints & Final Answer
Hint 1
1+3+\cdots+(2m-1)=212+\big(2+4+\cdots+2n\big)
Hint 2
Use 25. Arithmetic Sequence and Series.
Hint 3
m^2 = 212 + n(n+1)
Hint 4
Use 6. Square of a Sum and 10. Difference of Squares.
Hint 5
m^2 = 212 + \Big(n+\tfrac12\Big)^2 - \tfrac14
Hint 6
4m^2 = 848 + (2n+1)^2 - 1
Hint 7
4m^2 - (2n+1)^2 = 847
Hint 8
(2m+2n+1)(2m-2n-1)=847
Hint 9
Since 2m+2n+1 and 2m-2n-1 are factors of 847.
Final Answer
(A) 255
AMC 10B — Problems
AMC 10B 2023 ( Problem 22 )
How many distinct values of x satisfy \lfloor x \rfloor^2 - 3x + 2 = 0, where \lfloor x \rfloor denotes the greatest integer less than or equal to x?
- an infinite number
- 4
- 2
- 3
- 0
Hints & Final Answer
Hint 1
Use 29. Integer and Fractional Parts.
Hint 2
Let x=k+r with k\in\mathbb{Z}, 0\le r<1. Then \lfloor x\rfloor=k.
Hint 3
Substitute:
k^2-3(k+r)+2=0\ \Rightarrow\ r=\dfrac{k^2-3k+2}{3}
Hint 4
Since 0\le r<1,
0\le \dfrac{k^2-3k+2}{3} < 1.
Hint 5
From the left inequality:
k^2-3k+2\ge 0 \Rightarrow (k-1)(k-2)\ge 0.
Using 31. Signs and Roots of Quadratics: k\in(-\infty,1]\cup[2,\infty).
Since k is an integer \Rightarrow k can be any integer.
Hint 6
From the right inequality:
\dfrac{k^2-3k+2}{3} < 1 \Rightarrow k^2-3k-1<0.
Use 21. Quadratic Formula: roots \dfrac{3\pm\sqrt{13}}{2}\approx-0....,\ 3.... .
By 31. Signs and Roots: -0....\lt k\lt 3....\Rightarrow k\in\{0,1,2,3\}.
Hint 7
Compute r=\dfrac{k^2-3k+2}{3} for each k:
k=0\Rightarrow r=\tfrac{2}{3}; k=1\Rightarrow r=0; k=2\Rightarrow r=0; k=3\Rightarrow r=\tfrac{2}{3}.
Thus x=k+r\in\left\{\tfrac{2}{3},\,1,\,2,\,\tfrac{11}{3}\right\} — four distinct values.
Final Answer
(B) 4
AMC 10B 2023 ( Problem 14 )
How many ordered pairs of integers (m,n) satisfy m^2+mn+n^2=m^2n^2?
- 7
- 1
- 3
- 6
- 5
Hints & Final Answer
Hint 1
Add mn to both sides.
Hint 2
Use 6. Square of a sum.
Hint 3
(m+n)^2=m^2n^2+mn
Hint 4
By using 6. Square of a sum:
m^2n^2+mn=\left(mn+\tfrac12\right)^2-\tfrac14
Hint 5
From Hint 3 and Hint 4:
(m+n)^2=\left(mn+\tfrac12\right)^2-\tfrac14
Multiply both sides by 4:
(2m+2n)^2=(2mn+1)^2-1
(2mn+1)^2-(2m+2n)^2=1
By using 10. Difference of Squares:
\big(2mn+1+2m+2n\big)\big(2mn+1-2m-2n\big)=1
Hint 6
Case 1:
\begin{aligned} 2mn+1+2m+2n&=1\\ 2mn+1-2m-2n&=1 \end{aligned}
Adding: 4mn+2=2\Rightarrow mn=0\Rightarrow m=0\ \text{or}\ n=0
If m=0 \Rightarrow 2mn+1+2m+2n=1+2n=1\Rightarrow n=0
\Rightarrow (m,n)=(0,0)
Hint 7
Case 2:
\begin{aligned} 2mn+1+2m+2n&=-1\\ 2mn+1-2m-2n&=-1 \end{aligned}
\Rightarrow 4mn+2=-2\Rightarrow 4mn=-4\Rightarrow mn=-1
If m=1,\ n=-1 then 2mn+1+2m+2n=-2+1+2-2=-1 and 2mn+1-2m-2n=-2+1-2+2=-1.
Similarly, (m,n)=(-1,1).
Solutions: (m,n)=(1,-1),\,(-1,1).
Final Answer
(C) 3
AMC 10B 2022 ( Problem 17 )
One of the following numbers is not divisible by any prime number less than 10. Which is it?
- \(2^{606}-1\)
- \(2^{606}+1\)
- \(2^{607}-1\)
- \(2^{607}+1\)
- \(2^{607}+3^{607}\)
Hints & Final Answer
Hint 1
Refer to 13. General difference of powers and 14. Sum of odd powers.
Hint 2
\(a-b \mid a^n-b^n,\quad n\in\mathbb{Z}^+\)
Hint 3
\(a+b \mid a^n+b^n,\quad n \text{ odd}\)
Hint 4
Choice A: \[ 2^{606}-1=(2^2)^{303}-1=4^{303}-1, \] so \(4-1=3 \mid 4^{303}-1\).
Hint 5
Choice B: \[ 2^{606}+1=4^{303}+1, \] so \(4+1=5 \mid 4^{303}+1\).
Hint 6
Choice D: \(2+1=3 \mid 2^{607}+1\).
Hint 7
Choice E: \(2+3=5 \mid 2^{607}+3^{607}\).
Final Answer
(C) \(2^{607}-1\)
AMC 10B 2022 ( Problem 15 )
Let \(S_n\) be the sum of the first \(n\) terms of an arithmetic sequence that has a common difference of \(2\). The quotient \(\dfrac{S_{3n}}{S_n}\) does not depend on \(n\). What is \(S_{20}\)?
- 340
- 360
- 380
- 400
- 420
Hints & Final Answer
Hint 1
Use 25. Arithmetic Sequence and Series.
Hint 2
\[ a_n = a_1 + (n-1)d = a_1 + 2(n-1) \]
Hint 3
\[ S_n = \frac{n}{2}(a_1+a_n) = \frac{n}{2}\big(2a_1+2(n-1)\big) \]
Hint 4
\[ S_{3n} = \frac{3n}{2}\big(2a_1+2(3n-1)\big) \]
Hint 5
Let \(a=a_1\). \[ \frac{S_{3n}}{S_n} = \frac{3\big(2a+2(3n-1)\big)}{2a+2(n-1)} \]
Hint 6
Since the ratio is independent of \(n\), \(\dfrac{S_3}{S_1}=\dfrac{S_6}{S_2}.\)
Hint 7
\[ \frac{3(2a+4)}{2a} = \frac{3(2a+10)}{2a+2} \]
Hint 8
\[ \frac{a+2}{a} = \frac{a+5}{a+1} \]
Hint 9
\[ a^2+5a = a^2+3a+2 \Rightarrow 2a=2 \Rightarrow a=1 \]
Hint 10
\[ S_{20} = \frac{20}{2}(a_1+a_{20}) =10\Big(1 + \big(1+19\cdot2\big)\Big) =400 \]
Final Answer
(D) 400
AMC 10B 2022 ( Problem 9 )
The sum
\[ \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{2021}{2022!} \]
can be expressed as \(a – \frac{1}{b!}\), where \(a\) and \(b\) are positive integers. What is \(a+b\)?
- 2020
- 2021
- 2022
- 2023
- 2024
Hints & Final Answer
Hint 1
Use 5. Telescoping Series.
Hint 2
\[ \frac{k}{(k+1)!} = \frac{1}{k!} – \frac{1}{(k+1)!} \]
Hint 3
\[ \frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{2021}{2022!} = \left(\frac{1}{1!}-\frac{1}{2!}\right) +\left(\frac{1}{2!}-\frac{1}{3!}\right) +\cdots +\left(\frac{1}{2021!}-\frac{1}{2022!}\right) = \frac{1}{1!}-\frac{1}{2022!} =1-\frac{1}{2022!} \] Therefore \(a=1\) and \(b=2022\), so \(a+b=2023\).
Final Answer
(D) 2023
AMC 10B 2022 ( Problem 21 )
Let \(P(x)\) be a polynomial with rational coefficients such that when \(P(x)\) is divided by \(x^2 + x + 1\), the remainder is \(x + 2\), and when \(P(x)\) is divided by \(x^2 + 1\), the remainder is \(2x + 1\). There is a unique polynomial of least degree with these two properties. What is the sum of the squares of the coefficients of that polynomial?
- 10
- 13
- 19
- 20
- 23
Hints & Final Answer
Hint 1
Try small degrees for \(P(x)\). Use Remainder Theorem for quadratics.
Hint 2
If \(\deg P(x)=0\): \(P(x)=c\). Remainder on division by \(x^2+x+1\) would be \(c\), but must be \(x+2\). Impossible.
Hint 3
If \(\deg P(x)=1\): \(P(x)=ax+b\). From \(x^2+x+1\), remainder \(ax+b=x+2\Rightarrow a=1,b=2\). From \(x^2+1\), remainder \(ax+b=2x+1\Rightarrow a=2,b=1\). Contradiction.
Hint 4
If \(\deg P(x)=2\): \(P(x)=ax^2+bx+c\). Mod \(x^2+x+1=0\Rightarrow x^2=-x-1\): \[ ax^2+bx+c = a(-x-1)+bx+c = x(b-a)+(c-a). \] We need \(x(b-a)+(c-a)=x+2\Rightarrow b-a=1,\ c-a=2.\)
Mod \(x^2+1=0\Rightarrow x^2=-1\): \[ ax^2+bx+c = -a+bx+c = bx+(c-a). \] We need \(bx+(c-a)=2x+1\Rightarrow b=2,\ c-a=1.\) But \(c-a\) can’t be both 2 and 1. Impossible.
Hint 5
If \(\deg P(x)=3\): \(P(x)=ax^3+bx^2+cx+d\). In \(x^2+x+1=0\), we have \(x^2=-x-1\) and \(x^3=-x^2-x=1\). Then \[ P(x)\equiv a + b(-x-1) + cx + d = x(c-b) + (a-b+d). \] We want this to be \(x+2\), so \[ c-b=1,\quad a-b+d=2. \] In \(x^2+1=0\), we have \(x^2=-1,\ x^3=-x\). Then \[ P(x)\equiv a(-x)+b(-1)+cx+d = x(c-a)+(d-b). \] We want this \(=2x+1\), so \[ c-a=2,\quad d-b=1. \]
Hint 6
From the system \[ \begin{cases} c-b=1\\ a-b+d=2\\ c-a=2\\ d-b=1 \end{cases} \] Use \(d=b+1\) and \(c=a+2\). Then \(c-b=a+2-b=1 \Rightarrow a-b=-1.\) Also \(a-b+d = a-b+b+1 = 2 \Rightarrow a=1.\) Then \(b=a+1=2,\ c=a+2=3,\ d=3.\)
Final Answer
\(P(x)=x^3+2x^2+3x+3.\) Sum of squares of coefficients: \[ 1^2+2^2+3^2+3^2 = 23. \] (E) 23
AMC 10B Fall 2021 ( Problem 22 )
For each integer \(n \ge 2\), let \(S_n\) be the sum of all products \(jk\), where \(j\) and \(k\) are integers and \(1 \le j < k \le n\). What is the sum of the 10 least values of \(n\) such that \(S_n\) is divisible by 3?
- 196
- 197
- 198
- 199
- 200
Hints & Final Answer
Hint 1
Use 1. Sum of the first \(n\) integers and 24. Square of a sum (n terms).
Hint 2
\[ (1+2+\cdots+n)^2 = 1^2+2^2+\cdots+n^2 + 2\big(1\cdot2+1\cdot3+\cdots+(n-1)n\big) \]
Hint 3
\[ S_n = 1\cdot2 + 1\cdot3 + \cdots + (n-1)n = \frac{(1+2+\cdots+n)^2 – (1^2+2^2+\cdots+n^2)}{2} \]
Hint 4
Using known sums: \[ S_n = \frac{\left(\frac{n(n+1)}{2}\right)^2 – \frac{n(n+1)(2n+1)}{6}}{2} = \frac{n(n+1)(3n^2-n-2)}{24} = \frac{n(n+1)(3n+2)(n-1)}{24}. \]
Hint 5
For \(3\mid S_n\) we need \(n(n+1)(3n+2)(n-1)\) to be a multiple of \(9\). Since \(3n+2\) is not a multiple of 3, \((n-1)n(n+1)\) must be a multiple of 9. Among three consecutive integers exactly one is a multiple of 3, so that one must be a multiple of 9. Hence \(n \equiv 1,0,-1 \pmod{9}.\)
Hint 6
Since \(n\ge2\), the 10 least such values are \(8,9,10,17,18,19,26,27,28,35\).
Final Answer
(B) 197
AMC 10B Spring 2021 ( Problem 15 )
The real number \(x\) satisfies the equation \[ x + \frac{1}{x} = \sqrt{5}. \] What is the value of \[ x^{11} – 7x^{7} + x^{3}\, ? \]
- \(-1\)
- 0
- 1
- 2
- \(\sqrt{5}\)
Hints & Final Answer
Hint 1
Factor the expression: \[ x^{11} – 7x^{7} + x^{3} = x^{7}\!\Big(x^{4} – 7 + \frac{1}{x^{4}}\Big). \]
Hint 2
We’ll try to compute \(x^{4} + \dfrac{1}{x^{4}}\). To get that, first find \(x^{2} + \dfrac{1}{x^{2}}\). Use the square of a sum.
Hint 3
Calculate \(x^{2} + \dfrac{1}{x^{2}}\).
Hint 4
\[ x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} – 2 = (\sqrt{5})^{2} – 2 = 5 – 2 = 3. \]
Hint 5
Now calculate \(x^{4} + \dfrac{1}{x^{4}}\).
Hint 6
Square the result from Hint 4: \[ x^{4} + \frac{1}{x^{4}} = \left(x^{2} + \frac{1}{x^{2}}\right)^{2} – 2 = 3^{2} – 2 = 9 – 2 = 7. \]
Hint 7
Substitute back into the expression from Hint 1: \[ x^{11} – 7x^{7} + x^{3} = x^{7}\!\Big(\underbrace{x^{4} + \frac{1}{x^{4}}}_{=7} – 7\Big) = x^{7}(7 – 7) = x^{7} \cdot 0 = 0. \]
Final Answer
(B) 0
AMC 12A — Problems
AMC 12A 2023 ( Problem 12 )
What is the value of
2^3-1^3+4^3-3^3+6^3-5^3+\cdots+18^3-17^3\ ?
- 2023
- 2679
- 2941
- 3159
- 3235
Hints & Final Answer
Hint 1
Rewrite as -(1^3+2^3+\cdots+18^3)+2(2^3+4^3+6^3+\cdots+18^3).
Hint 2
Use Identity 3. Sum of Cubes: 1^3+2^3+\cdots+n^3=\left(\frac{n(n+1)}{2}\right)^2.
Hint 3
Note 2^3+4^3+6^3+\cdots+18^3=8(1^3+2^3+\cdots+9^3).
Final Answer
(D) 3159
AMC 12A 2023 ( Problem 10 )
Positive real numbers x and y satisfy y^3=x^2 and (y-x)^2=4y^2. What is x+y?
- 12
- 18
- 24
- 36
- 42
Hints & Final Answer
Hint 1
y-x=\pm 2y
Hint 2
Case 1: y-x=2y\ \Rightarrow\ y=-x
Hint 3
In Case 1:
y^3=x^2\ \Rightarrow\ (-x)^3=x^2\ \Rightarrow\ -x^3=x^2\ \Rightarrow\ x=0,-1
But x>0 (and y>0) so Case 1 gives no solution.
Hint 4
Case 2: y-x=-2y\ \Rightarrow\ x=3y
Hint 5
In Case 2:
y^3=x^2\ \Rightarrow\ y^3=(3y)^2\ \Rightarrow\ y^3=9y^2
\Rightarrow\ y=0,9; with y>0 we get y=9\Rightarrow x=27.
Final Answer
(D) 36
AMC 12A 2023 ( Problem 23 )
How many ordered pairs of positive real numbers (a,b) satisfy the equation (1+2a)(2+2b)(2a+b)=32ab\ ?
- 0
- 1
- 2
- 3
- an infinite number
Hints & Final Answer
Hint 1
Use 28. AM–GM Inequality.
Hint 2
1+2a\ \ge\ 2\sqrt{2a}
Hint 3
2+2b\ \ge\ 2\sqrt{4b}=4\sqrt{b}
Hint 4
2a+b\ \ge\ 2\sqrt{2ab}
Hint 5
By multiplying Hints 2, 3, and 4:
(1+2a)(2+2b)(2a+b)\ \ge\ 32ab
Hint 6
By using 28. AM–GM Inequality, equality holds if and only if
1=2a,\qquad 2=2b,\qquad 2a=b
Hint 7
a=\tfrac12,\quad b=1
Final Answer
(B) 1
AMC 12A 2022 ( Problem 21 )
Let \(P(x)=x^{2022}+x^{1011}+1.\) Which of the following polynomials is a factor of \(P(x)\)?
- \(x^2-x+1\)
- \(x^2+x+1\)
- \(x^4+1\)
- \(x^6-x^3+1\)
- \(x^6+x^3+1\)
Hints & Final Answer
Hint 1
Use 32. Remainder of Polynomial Division.
Hint 2
Checking Choice (A):
\(x^2-x+1=0 \Rightarrow x^2=x-1\)
\(x^3=x^2\cdot x=(x-1)x=x^2-x=(x-1)-x=-1\)
\[ x^{2022}+x^{1011}+1=(x^3)^{674}+(x^3)^{337}+1 =(-1)^{674}+(-1)^{337}+1 =1\ne0 \]
Hint 3
Checking Choice (B):
\(x^2+x+1=0 \Rightarrow x^2=-x-1\)
\(x^3=-x^2-x=x+1-x=1\)
\[ x^{2022}+x^{1011}+1=(x^3)^{674}+(x^3)^{337}+1 =1+1+1=3\ne0 \]
Hint 4
Checking Choice (C):
\(x^4+1=0 \Rightarrow x^4=-1\)
\(x^{2022}=x^2(x^4)^{505}=-x^2,\quad x^{1011}=x^3(x^4)^{252}=x^3\)
\(x^{2022}+x^{1011}+1=-x^2+x^3+1\ne0\)
Hint 5
Checking Choice (D):
\(x^6-x^3+1=0 \Rightarrow x^6=x^3-1\)
\(x^9=x^6\cdot x^3=(x^3-1)x^3=x^6-x^3=(x^3-1)-x^3=-1\)
\[ x^{2022}+x^{1011}+1 =(x^9)^{224}x^6+(x^9)^{112}x^3+1 =(-1)^{224}x^6+(-1)^{112}x^3+1 =x^6+x^3+1 =2x^3\ne0 \]
Hint 6
Checking Choice (E):
\(x^6+x^3+1=0 \Rightarrow x^6=-x^3-1\)
\(x^9=x^6\cdot x^3=(-x^3-1)x^3=-x^6-x^3=-( -x^3-1)-x^3=1\)
\[ x^{2022}+x^{1011}+1 =(x^9)^{224}x^6+(x^9)^{112}x^3+1 =1^{224}x^6+1^{112}x^3+1 =x^6+x^3+1 =0 \]
Final Answer
(E) \(x^6+x^3+1\)
AMC 12A/10A 2022 ( Problem 15 )
AMC 12A Fall 2021 ( Problem 12 )
What is the number of terms with rational coefficients among the 1001 terms in the expansion of \((x\sqrt[3]{2}+y\sqrt{3})^{1000}\)?
- 0
- 166
- 167
- 500
- 501
Hints & Final Answer
Hint 1
Use 20. Binomial Theorem.
Hint 2
Each term has the form \[ (x\sqrt[3]{2})^k(\sqrt{3}y)^{1000-k}, \quad 0 \le k \le 1000. \]
Hint 3
For \((\sqrt[3]{2})^k\) to be rational, \(k\) must be a multiple of 3.
Hint 4
For \((\sqrt{3})^{1000-k}\) to be rational, \(1000-k\) must be even, so \(k\) must be even.
Hint 5
So \(k\) must be a multiple of 6.
Hint 6
\[ 0 \le k = 6q \le 1000 \Rightarrow 0 \le q \le 166. \] There are 167 possible \(q\).
Final Answer: (C) 167
AMC 12A/10A Spring 2021 ( Problem 12 )
AMC 12A Spring 2021 ( Problem 19 )
How many solutions does the equation \[ \sin\!\Big(\tfrac{\pi}{2}\cos x\Big) = \cos\!\Big(\tfrac{\pi}{2}\sin x\Big) \] have in the closed interval \([0,\pi]\)?
- 0
- 1
- 2
- 3
- 4
Hints & Final Answer
Hint 1
By 37. Trigonometric Transformations: \[ \cos\!\Big(\tfrac{\pi}{2}\sin x\Big) =\sin\!\Big(\tfrac{\pi}{2}-\tfrac{\pi}{2}\sin x\Big). \]
Hint 2
Use 36. General Solutions of Trigonometric Equations.
Hint 3
Case 1: \[ \tfrac{\pi}{2}\cos x = \tfrac{\pi}{2}-\tfrac{\pi}{2}\sin x+2\pi k \quad\Rightarrow\quad \sin x+\cos x=1+4k. \] Using identities: \[ \sqrt2\,\sin\!\big(x+\tfrac{\pi}{4}\big)=1 \Rightarrow \sin\!\big(x+\tfrac{\pi}{4}\big)=\tfrac{\sqrt2}{2}=\sin\tfrac{\pi}{4}. \]
Hint 4
By general solutions: \[ x+\tfrac{\pi}{4}=\tfrac{\pi}{4}+2\pi q \text{ or } \tfrac{3\pi}{4}+2\pi q \Rightarrow x=0,\tfrac{\pi}{2}. \]
Hint 5
Case 2: \[ \tfrac{\pi}{2}\cos x =-\Big(\tfrac{\pi}{2}-\tfrac{\pi}{2}\sin x\Big)+2\pi k \quad\Rightarrow\quad \cos x-\sin x=1+4(k-1). \] The feasible value is \(\cos x-\sin x=1.\) Then \[ -\sqrt2\,\sin\!\big(x-\tfrac{\pi}{4}\big)=1 \Rightarrow \sin\!\big(x-\tfrac{\pi}{4}\big)=-\tfrac{\sqrt2}{2} =\sin\!\big(-\tfrac{\pi}{4}\big). \]
Hint 6
General solutions: \[ x-\tfrac{\pi}{4}=-\tfrac{\pi}{4}+2\pi q \text{ or } \tfrac{5\pi}{4}+2\pi q \Rightarrow x=0 \text{ in }[0,\pi]. \] So the solutions in \([0,\pi]\) are \(x=0,\tfrac{\pi}{2}\).
Final Answer: (C) 2
AMC 12A/10A Fall 2021 ( Problem 17 )
AMC 12A Fall 2021 ( Problem 19 )
Let \(x\) be the least real number greater than 1 such that \(\sin(x)=\sin(x^2)\), where the arguments are in degrees. What is \(x\) rounded up to the closest integer?
- 10
- 13
- 14
- 19
- 20
Hints & Final Answer
Hint 1
Use 36. General Solutions of Trigonometric Equations.
Hint 2
\[ \sin x = \sin x^2 \Rightarrow x^2 = x + 360k \text{ or } x^2 = 180 – x + 360k, \quad k\in\mathbb{Z} \quad(\text{degrees}) \]
Hint 3
Case 1: \(x^2 = x + 360k\). \[ x^2 – x – 360k = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 + 1440k}}{2}. \] Minimum \(x>1\) occurs at \(k=1\): \[ x = \frac{1 + \sqrt{1441}}{2} \approx \frac{1+38}{2} = 19.5. \]
Hint 4
Case 2: \(x^2 = 180 – x + 360k\). \[ x^2 + x – 360k – 180 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{1440k + 721}}{2}. \] Minimum \(x>1\) is at \(k=0\): \[ x = \frac{-1 + \sqrt{721}}{2} \approx \frac{-1 + 27}{2} = 13. \] Round up: 13.
Final Answer: (B) 13
AMC 12A/10A 2020 ( Problem 19 )
AMC 12B — Problems
AMC 12B 2023 ( Problem 14 )
For how many ordered pairs (a, b) of integers does the polynomial x^3 + ax^2 + bx + 6 have 3 distinct integer roots?
- 5
- 6
- 8
- 7
- 4
Hints & Final Answer
Hint 1
Use 30. Vieta’s Formula.
Hint 2
r_1 + r_2 + r_3 = -a
r_1 r_2 + r_1 r_3 + r_2 r_3 = b
r_1 r_2 r_3 = -6
Hint 3
r_1 r_2 r_3 = -6
r_1, r_2, and r_3 are integer roots.
WLOG, assume r_1 < r_2 < r_3
Hint 4
Use casework:
| r1 | r2 | r3 | a | b |
|---|---|---|---|---|
| -1 | 1 | 6 | -6 | -1 |
| -1 | 2 | 3 | -4 | 1 |
| -2 | 1 | 3 | -2 | -5 |
| -3 | 1 | 2 | 0 | -7 |
| -3 | -2 | -1 | 6 | 11 |
Final Answer
(A) 5
AMC 12B 2022 ( Problem 4 )
For how many values of the constant \(k\) will the polynomial \(x^2 + kx + 36\) have two distinct integer roots?
- 6
- 8
- 9
- 14
- 16
Hints & Final Answer
Hint 1
Use 30. Vieta’s Formula.
Hint 2
\[ r_1 + r_2 = -k,\quad r_1 r_2 = 36 \]
Hint 3
\(36 = 2^2\cdot 3^2\). Use 33. Number of Positive Divisors.
Hint 4
\(36\) has \((2+1)(2+1)=9\) positive divisors. Roots \(r_1\) and \(r_2\) are distinct, and \(k=-(r_1+r_2).\)
Hint 5
\(r_1 < r_2 \in \{\pm1,\pm2,\pm3,\pm4,\pm6,\pm9,\pm12,\pm18,\pm36\}\)
Pairs with product \(36\): \((1,36), (-1,-36), (2,18), (-2,-18), (3,12), (-3,-12), (4,9), (-4,-9)\)
Hint 6
\[ k = -(r_1 + r_2) = \pm 37,\ \pm 20,\ \pm 15,\ \pm 13 \]
Final Answer
(B) 8
AMC 12B/10B 2022 ( Problem 15 )
AMC 12B/10B 2022 ( Problem 20 )
AMC 12B 2021 Fall ( Problem 13 )
Let \(c=\dfrac{2\pi}{11}.\) What is the value of \[ \frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c} {\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}\ ? \]
- \(-1\)
- \(-\dfrac{\sqrt{11}}{5}\)
- \(\dfrac{\sqrt{11}}{5}\)
- \(\dfrac{10}{11}\)
- 1
Hints & Final Answer
Hint 1
\(c=\frac{2\pi}{11}\Rightarrow 11c=2\pi.\)
Hint 2
Use 37. Trigonometry Transformations.
Hint 3
\(\sin 6c=\sin(2\pi-6c)=-\sin(11c-6c)=-\sin 5c.\)
Hint 4
\(\sin 9c=\sin(11c-2c)=-\sin 2c.\)
Hint 5
\(\sin 12c=\sin(11c+c)=\sin c.\)
Hint 6
\(\sin 15c=\sin(11c+4c)=\sin 4c.\)
Hint 7
\[ \frac{\sin3c\cdot\sin6c\cdot\sin9c\cdot\sin12c\cdot\sin15c} {\sin c\cdot\sin2c\cdot\sin3c\cdot\sin4c\cdot\sin5c} = \frac{\sin3c\cdot(-\sin5c)\cdot(-\sin2c)\cdot\sin c\cdot\sin4c} {\sin c\cdot\sin2c\cdot\sin3c\cdot\sin4c\cdot\sin5c} =1. \]
Final Answer
(E) 1
AMC 12B 2021 Spring ( Problem 16 )
Let \(g(x)\) be a polynomial with leading coefficient 1, whose three roots are the reciprocals of the three roots of \(f(x) = x^3 + ax^2 + bx + c,\) where \(1 < a < b < c.\) What is \(g(1)\) in terms of \(a, b,\) and \(c\)?
- \(\dfrac{1 + a + b + c}{c}\)
- \(1 + a + b + c\)
- \(\dfrac{1 + a + b + c}{c^2}\)
- \(\dfrac{a + b + c}{c^2}\)
- \(\dfrac{1 + a + b + c}{a + b + c}\)
Hints & Final Answer
Hint 1
Use Vieta’s Formula.
Hint 2
If \(r_1, r_2, r_3\) are the roots of \(f(x)\), then \[ r_1 + r_2 + r_3 = -a,\quad r_1r_2 + r_2r_3 + r_3r_1 = b,\quad r_1r_2r_3 = -c. \]
Hint 3
The polynomial \(g(x)\) has reciprocal roots, so \[ g(x) = (x – \tfrac{1}{r_1})(x – \tfrac{1}{r_2})(x – \tfrac{1}{r_3}). \]
Hint 4
Evaluate \(g(1)\): \[ g(1) = (1 – \tfrac{1}{r_1})(1 – \tfrac{1}{r_2})(1 – \tfrac{1}{r_3}) = \frac{(r_1-1)(r_2-1)(r_3-1)}{r_1r_2r_3} \] \[ = \frac{r_1r_2r_3 – (r_1r_2 + r_2r_3 + r_3r_1) + (r_1+r_2+r_3) – 1}{r_1r_2r_3}. \] Substitute from Vieta: \[ g(1) = \frac{-c – b – a – 1}{-c} = \frac{1 + a + b + c}{c}. \]
Final Answer
(A) \(\dfrac{1 + a + b + c}{c}\)
AMC 12B 2021 Spring ( Problem 20 )
Let \(Q(z)\) and \(R(z)\) be the unique polynomials such that
z^{2021}+1=(z^2+z+1)\,Q(z)+R(z)
and the degree of \(R\) is less than \(2\). What is \(R(z)\)?
- -z
- -1
- 2021
- z+1
- 2z+1
Hints & Final Answer
Hint 1
Use the Remainder Theorem for polynomial division modulo \(z^2+z+1\).
Hint 2
From \(z^2+z+1=0\) we get
z^2=-z-1 and hence
z^3=1 (for \(z\neq1\)).
Hint 3
Reduce the power:
z^{2021}=(z^3)^{673}\,z^2\equiv z^2\pmod{z^2+z+1}.
So
z^{2021}+1\equiv z^2+1\equiv(-z-1)+1=-z.
Therefore the remainder \(R(z)\) is \(-z\).
Final Answer
(A) -z
AMC 12B/10B 2020 ( Problem 21 )
AMC 8 — Problems
AMC 8 2022 ( Problem 8 )
What is the value of
\frac{1}{3}\cdot\frac{2}{4}\cdot\frac{3}{5}\cdots\frac{18}{20}\cdot\frac{19}{21}\cdot\frac{20}{22} ?
- \frac{1}{462}
- \frac{1}{231}
- \frac{1}{132}
- \frac{2}{213}
- \frac{1}{22}
Hints & Final Answer
Hint 1
Use Identity 5. Telescoping Series.
Final Answer
(E) \frac{1}{22}
AIME — Problems
AIME II 2022 ( Problem 10 )
Find the remainder when \binom{3}{2}+\binom{4}{2}+\cdots+\binom{40}{2} is divided by 1000.
Hints & Final Answer
Hint 1
\binom{\binom{k}{2}}{2} = \frac{\binom{k}{2}\Big(\binom{k}{2}-1\Big)}{2} = \frac{\frac{k(k-1)}{2}\cdot\frac{k(k-1)-2}{2}}{2} \\ = \frac{1}{8}\,k(k-1)\big(k^2-k-2\big) = \frac{1}{8}\,k(k-1)(k-2)(k+1) \\ = \frac{1}{8}\cdot 4!\,\binom{k+1}{4} = 3\binom{k+1}{4}
Hint 2
Use 16. Hockey Stick Identity
Hint 3
3\binom{42}{5}=\frac{42\times41\times40\times39\times38}{5\times4\times2} =42\times41\times39\times38=(40+2)(40+1)(40-1)(40-2)
Hint 4
Use 10. Difference of Squares
Hint 5
(1600-4)(1600-1)
Final Answer
004
USAJMO — Problems
USAJMO 2023 ( Problem 1 )
Find all triples of positive integers (x, y, z) that satisfy the equation 2(x + y + z + 2xyz)^2 = (2xy + 2yz + 2zx + 1)^2 + 2023.
Hints & Final Answer
Hint 1
Use 24. Squares of a sum.
Hint 2
Expand and simplify it.
Hint 3
8x^2y^2z^2 - 4x^2y^2 - 4y^2z^2 - 4z^2x^2 + 2x^2 + 2y^2 + 2z^2 - 1 = 2023
Hint 4
Use 26. Factorization of three binomials.
Hint 5
(2x^2 - 1)(2y^2 - 1)(2z^2 - 1) = 2023
Hint 6
Prime factorize 2023.
Hint 7
(2x^2 - 1)(2y^2 - 1)(2z^2 - 1) = 7 \times 17^2
Hint 8
When a \in \mathbb{Z}^+, then 2a^2 - 1 \in \{1, 7, 17, 119, 289, 2023\}
Hint 9
a^2 = 1, 4, 9, 60, 145, 1012
\Rightarrow a = 1, 2, 3, \times, \times, \times
Hint 10
2x^2 - 1, 2y^2 - 1, 2z^2 - 1 \in \{1, 7, 17\}
Hint 11
2023 = 7 \times 17 \times 17
Hint 12
2x^2 - 1, 2y^2 - 1, 2z^2 - 1 is a permutation of \{7, 17, 17\}
Final Answer
(x, y, z) = (2, 3, 3), (3, 2, 3), (3, 3, 2)
USAMO — Problems
USAMO 2018 ( Problem 1 )
Let a, b, c be positive real numbers such that a + b + c = 4\sqrt[3]{abc}. Prove that 2(ab + bc + ca) + 4\min(a^2, b^2, c^2) \ge a^2 + b^2 + c^2.
Hints & Final Answer
Hint 1
WLOG, assume a \le b \le c.
Hint 2
We should prove 2(ab + bc + ca) + 4a^2 \ge a^2 + b^2 + c^2.
Hint 3
Use 24. Square of a Sum.
Hint 4
Add 2ab + 2ac + 2bc to both sides.
Hint 5
We should prove 4(ab + bc + ca + a^2) \ge (a + b + c)^2.
Hint 6
Use a + b + c = 4\sqrt[3]{abc}.
Hint 7
We should prove 4(4a\sqrt[3]{abc} + bc) \ge 16\sqrt[3]{a^2b^2c^2}.
Hint 8
Use 28. AM–GM Inequality.
Hint 9
By using 28. AM–GM Inequality, \frac{4a\sqrt[3]{abc} + bc}{2} \ge \sqrt{4a\sqrt[3]{abc} \cdot bc} = 2\sqrt[3]{a^2b^2c^2}.
Final Answer
Multiply both sides of Hint 9 by 8 to get the desired result.
MathCounts — Problems
MathCounts 2025 Chapter — Sprint Round ( Problem 27 )
Let 2^n be the greatest power of 2 that divides the expression shown. What is the value of n?
1\times2\times3\times4 + 2\times3\times4\times5 + 3\times4\times5\times6 + \cdots + 25\times26\times27\times28
Hints & Final Answer
Hint 1
a(a+1)(a+2)(a+3) = 4!\binom{a+3}{4}
Hint 2
Use Identity 16. Hockey Stick Identity.
Final Answer
3
MathCounts 2025 State — Sprint Round ( Problem 30 )
If x and y are real numbers such that (4 - x)(4 + y) = 2 and (4 + x)(4 - y) = 3, what is the value of (x^2 - 1)(y^2 - 1)? Express your answer as a common fraction.
Hints & Final Answer
Hint 1
Use Identity 22. Approaches to Similar Equations.
Hint 2
Add the two equations and find the value of xy.
Hint 3
Substitute xy into the first equation and find x - y.
Hint 4
Square x - y and use Identity 7. Square of a Difference.
Final Answer
\frac{9999}{64}
HMMT — Problems
HMMT 2025 — Algebra & Number Theory Round ( Problem 7 )
There exists a unique triple (a, b, c) of positive real numbers that satisfies the equations 2(a^2 + 1) = 3(b^2 + 1) = 4(c^2 + 1) and ab + bc + ca = 1.
Compute a + b + c.
Hints & Final Answer
Hint 1
Use 27. Expansion (or factorization) of two binomials.
Hint 2
a^2 + 1 = a^2 + ab + ac + ca = (a + b)(a + c)
Hint 3
2(a + b)(a + c) = 3(b + a)(b + c) = 4(c + a)(c + b)
Hint 4
Let a + b = x,\ a + c = y,\ b + c = z.
Hint 5
2xy = 3yz = 4xz
Hint 6
y = \tfrac{3x}{4},\quad z = \tfrac{x}{2}
Hint 7
a + b = x,\ a + c = \tfrac{3x}{4},\ b + c = \tfrac{x}{2}
Hint 8
a = \tfrac{5x}{8},\quad b = \tfrac{3x}{8},\quad c = \tfrac{x}{8}
Hint 9
ab + ac + bc = 1
Hint 10
x = \tfrac{8}{\sqrt{23}}
Hint 11
a + b + c = \tfrac{x + y + z}{2}
Final Answer
\tfrac{9}{\sqrt{23}} = \tfrac{9\sqrt{23}}{23}
BMO — Problems
BMO1 2016/2017 ( Problem 3 )
Determine all pairs (m,n) of positive integers which satisfy the equation n^2 - 6n = m^2 + m - 10.
Hints & Final Answer
Hint 1
Use 6. Squares of a sum, 7. Squares of a difference and 10. Difference of squares
Hint 2
(n-3)^2 - 9 = (m+\tfrac{1}{2})^2 - \tfrac{1}{4} - 10
Hint 3
5 = (2m+1)^2 - (2n-6)^2 = (2m+2n-5)(2m-2n+7)
Hint 4
2m+2n-5 and 2m-2n+7 are factors of 5
Final Answer
(m,n) = (1,2),\ (1,4)
SMO — Problems
SMO 2025 Junior ( Problem 8 )
If x and y are positive integers such that
xy - 9x - 9y = 20 find the value of x^2 + y^2.
Hints & Final Answer
Hint 1
Use Identity 23: SFFT (Simon’s Favorite Factoring Trick).
Hint 2
(x-9)(y-9)=101
Hint 3
Since x and y are positive integers, \text{w.l.o.g. } x-9=1,\ y-9=101.
Final Answer
12200
SMO 2025 Senior ( Problem 20 )
The roots of the polynomial 10x^3 - 39x^2 + 29x - 6 are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
- \dfrac{24}{5}
- \dfrac{42}{5}
- \dfrac{81}{5}
- 30
- 48
Hints & Final Answer
Hint 1
Use 30. Vieta’s Formula.
Hint 2
\text{Volume} = (r_1 + 2)(r_2 + 2)(r_3 + 2)
Hint 3
By using 30. Vieta’s Formula:
\begin{aligned} r_1 + r_2 + r_3 &= \frac{39}{10}, \\ r_1r_2 + r_1r_3 + r_2r_3 &= \frac{29}{10}, \\ r_1r_2r_3 &= \frac{6}{10}. \end{aligned}
Hint 4
Expand:
(r_1 + 2)(r_2 + 2)(r_3 + 2) = r_1r_2r_3 + 2(r_1r_2 + r_2r_3 + r_3r_1) + 4(r_1 + r_2 + r_3) + 8. Substitute from Vieta’s results:
\frac{6}{10} + 2\left(\frac{29}{10}\right) + 4\left(\frac{39}{10}\right) + 8 = 30.
Final Answer
(D) 30
SMO 2025 Open ( Problem 7 )
Let y = \sum_{k=0}^{20} \binom{20}{k}^2. Find the number of consecutive zeros at the end of the number (20!)^2 y when it is written in its decimal representation.
Hints & Final Answer
Hint 1
Use Identity 17. Vandermonde’s Identity.
Hint 2
y = \binom{40}{20}
Hint 3
(20!)^2 y = 40!
Hint 4
Find the number of factors of 5 in 40!.
Hint 5
Note that 25 contributes two factors of 5.
Final Answer
9
